
www.manaraa.com

Stochastic computing with biomolecular automata
Rivka Adar*†, Yaakov Benenson*†‡, Gregory Linshiz*‡, Amit Rosner§, Naftali Tishby§¶, and Ehud Shapiro*‡�

Departments of *Biological Chemistry and ‡Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel; §School of
Computer Science and Engineering and ¶Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel

Edited by Richard M. Karp, International Computer Science Institute, Berkeley, CA, and approved May 5, 2004 (received for review February 2, 2004)

Stochastic computing has a broad range of applications, yet elec-
tronic computers realize its basic step, stochastic choice between
alternative computation paths, in a cumbersome way. Biomolec-
ular computers use a different computational paradigm and hence
afford novel designs. We constructed a stochastic molecular au-
tomaton in which stochastic choice is realized by means of com-
petition between alternative biochemical pathways, and choice
probabilities are programmed by the relative molar concentrations
of the software molecules coding for the alternatives. Program-
mable and autonomous stochastic molecular automata have been
shown to perform direct analysis of disease-related molecular
indicators in vitro and may have the potential to provide in situ
medical diagnosis and cure.

S tochastic computing has a broad range of engineering and
scientific applications (1–3), in particular, the analysis of

biological information (4–7). The core recurring step of a
stochastic computation is the choice between several alternative
computation paths, each with a prescribed probability. Digital
electronic computers realize stochastic choice in a costly and
indirect way, through a software routine that invokes a pseudo-
random number generator and analyzes the result to determine
which alternative to choose (8). Although analog electronic
devices for generating random numbers were proposed (9), they
have not found their way into the mainstream. Furthermore,
speeding up the generation of random numbers does not alle-
viate the need to process each of them to perform the stochastic
choice. Biomolecular computers (10–13) use a different com-
putational paradigm from electronic computers and hence may
offer a radically different approach to this fundamental com-
puting task.

Biomolecular computers are molecular-scale, programmable,
autonomous computing machines in which the input, output,
software, and hardware are made of biological molecules (12).
Biomolecular computers hold the promise of direct computa-
tional analysis of biological information in its native biomolec-
ular form, eschewing its conversion into an electronic represen-
tation. Recently this capability was shown to afford direct
recognition and analysis of molecular disease indicators, pro-
viding in vitro disease diagnosis, which in turn was coupled to the
programmed release of the biologically active molecule modeled
after an antisense DNA drug (13). Because of the stochastic
nature of biomolecular systems (14), a stochastic biomolecular
computer would be more suitable for this biomedical task than
a deterministic one.

Although the vision of a universal biomolecular computer was
proposed three decades ago (15, 16), experimental research in this
area began only a decade ago (17). Initially, research focused on
large-scale DNA computers in which a human operator, or a
large-scale robot, uses parallel DNA manipulation operations to
achieve high performance in solving computationally intensive
problems (18–25). A different research track demonstrated molec-
ular systems that go through a predetermined sequence of state-
to-state transitions in a deterministic (26) or stochastic (27) fashion
and programmable, autonomous computing machines with molec-
ular input, output, software, and hardware that realize two-state,
two-symbol finite automata (10–12). A mathematical description of
such an automaton is shown in Fig. 1A, and an example computa-
tion is shown in Fig. 1B. In the molecular realization of these

automata the input is encoded as a single DNA molecule, transition
rules are encoded by another set of DNA molecules, and the
hardware consists of DNA-manipulating enzymes. A computation
commences when all molecular components are present in solution
and processes the input molecule in steps performed by the
hardware molecules, as directed by the software molecules. The
output molecule, formed by the programmed digestion of the input
molecule, encodes the result of the computation.

Although these experimental realizations demonstrate pri-
marily deterministic computations, both the mathematical no-
tion of automata (28) and its molecular realizations afford a
stochastic extension by allowing multiple competing transitions
to apply to any state-symbol combination. An automaton is said
to be stochastic if each elementary transition is ascribed a certain
probability (29), and the sum of probabilities of all transitions
applicable to a given state-symbol combination is 1. A stochastic
finite automaton is a simple notional computing machine. It is
compared with a deterministic finite automaton in Fig. 1. Unlike
a deterministic automaton, which is programmed by selecting a
specific set of transitions, at most one for each state-symbol
combination, a stochastic automaton potentially uses all transi-
tion rules, ascribing each transition with a predefined probabil-
ity. The output of a stochastic computation is the probability to
obtain each final state, computed from the probabilities of single
transitions by summing the probabilities of all possible compu-
tation paths that result in the same final state. Stochastic
automata are useful for the analysis of sequences or processes
that are not deterministic (3–5).

Here, we demonstrate a design principle for stochastic com-
puters, afforded by the unique properties of biomolecular com-
puters, to realize the intended probability of each transition by
the relative molar concentration of the software molecule en-
coding that transition. We describe and experimentally analyze
a stochastic molecular automaton that operates according to this
principle. The experiments show robustness of programmed
transition probabilities to input molecule concentrations and to
absolute software molecule concentrations and a good fit be-
tween predicted and actual result probabilities of multistep
computations.

Materials and Methods
Assembly of the Components. Software and input molecules:
single-stranded synthetic oligonucleotides (desalted and lyoph-
ilized, 1-�mol scale; Sigma-Genosys) composing the software
and input molecules were purified to homogeneity by using a
15% denaturing acrylamide gel (40 cm � 1.5 mm) containing 7
M urea. Input oligonucleotides used for the calibration of the
different concentration ratios of the transition molecules and for
constructing the long inputs were labeled with carboxyfluores-
cein (FAM) at the 3� of the sense DNA strand and with CY5 at
the 5� of the antisense DNA strand (Sigma-Genosys). The names

This paper was submitted directly (Track II) to the PNAS office.

Freely available online through the PNAS open access option.

Abbreviation: FAM, carboxyfluorescein.

†R.A. and Y.B. contributed equally to this work.

�To whom correspondence should be addressed. E-mail: ehud.shapiro@weizmann.ac.il.

© 2004 by The National Academy of Sciences of the USA

9960–9965 � PNAS � July 6, 2004 � vol. 101 � no. 27 www.pnas.org�cgi�doi�10.1073�pnas.0400731101

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 



www.manaraa.com

and sequences of the oligonucleotides were: A.cal.s (CAGGG-
CCGCAGGGCCGCAGGGCCTGGCTGCCAAAAATTA-
CCGATTAAGTTGGA-FAM), A.cal.as (Cy5-CCAACTTAA-
TCGGTAATTTTTGGCAGCCAGGCCCTGCGGCCCTG-
CGGC), B.cal.s (GGCTGCCTGGCGGCCTGGCTGCCGCA-
GGGCCAAAAATTACCGATTAGTTGGA-FAM), B.cal.as
(Cy5-CCAACTTAATCGGTAATTTTTGGCCCTGCGG-
CAGCCAGGCCGCCAGGC). The input bbba was prepared by
the annealing of A.cal.s and A.cal.as oligonucleotides, and the
input aaab was prepared by the annealing of B.cal.s and B.cal.as
oligonucleotides. The construction of the long inputs abbbbbba,
babbaaab, baaaaaab, babbabbbbbba, baaaabbbbbba, abbbbab-
baaab, abbbbaaaaaab, and the T1–T8 software molecules was
described elsewhere (11).

Calibration Reactions. Calibration of the different concentration
ratios of the software transition pairs was performed by using 0.1

�M concentrations of four-symbol inputs. In a typical reaction,
a program required for a particular calibration (Fig. 2A) was
composed as follows: for each deterministic step, a 0.5 �M
concentration of the corresponding transition was added. Thus,
the deterministic part of the computation was performed by a
total of 1.5 �M transition mixture. For the last-choice step, a
total of the 0.5 �M concentration of the tested transition
molecules mixture was taken at a required ratio. FokI enzyme
was added at the 2 �M final concentration to maintain the
stoichiometric ratio with the software molecules. Before input
addition reaction mixtures were preincubated with FokI at 15°C
for 20 min. The reactions were quenched after 2 h and run on
denaturing acrylamide gel (40 cm � 0.4 mm, 15%, 7 M urea) with
low-fluorescence plates. The fluorescence was read by using the
TYPHOON SCANNER CONTROL software of the Typhoon 9400
machine and quantified by using the IMAGEQUANT V. 5.2 software
(Amersham Pharmacia Biosciences). The quantitation was per-

Fig. 1. Deterministic and stochastic finite automata. (A) Deterministic finite automaton. The automaton has two states, S0 and S1, and can process sequences
containing the symbols a and b. The incoming unlabeled arrow marks the initial state and labeled arrows represent transition rules, each specifying the next
state based on the current state and the current symbol. The diagram shows an automaton that determines whether an input string contains an even number
of b symbols. (B) The linear computation path of the deterministic automaton processing the input abab, including the configurations (state-input combinations)
that arise during the computation and the sole transition that applies to each configuration. (C) Stochastic finite automaton. This automaton differs from the
deterministic one in that two competing transitions rather than one are applicable to each state-symbol combination. The probability of each transition to be
chosen is indicated in the diagram. The output of the computation is a probability distribution over the final states rather than a single final state. (D) The
computation graph of the stochastic automaton processing the input abab, including probabilities of choosing each transition and probability distributions of
intermediate configurations and final states. (E) Software. The complete list of transition rules of the two-state two-symbol automaton shown in B. (F) Competing
biochemical pathways of the stochastic molecular automaton on a configuration in which the state-symbol combination is �S0, b�, and the two applicable
transitions are T3 and T4.

Adar et al. PNAS � July 6, 2004 � vol. 101 � no. 27 � 9961

BI
O

CH
EM

IS
TR

Y
CO

M
PU

TE
R

SC
IE

N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 



www.manaraa.com

formed according to the Cy5 label (PMT 500–550 V) on the 5�
terminus of the antisense strand, because it gave more repro-
ducible and consistent results than the FAM label on the 3�
terminus of the sense strand. Excitation was done with the red
laser (633 nm), and emission was measured through the 670
BP30 filter.

Computation Reactions. In a typical reaction, the ratios of the
input, the software, and the hardware were 0.1:2:2 (input�
transition molecules�FokI, respectively). Each pair of competing

transition molecules was maintained at 0.5 �M concentration.
Computation reactions containing the input, transition mole-
cules, and the FokI class IIS restriction enzyme (54 �M stock; 60
units��l; New England Biolabs) were performed in 10 �l of
NEB4 buffer at 15°C. Before input addition reaction mixtures
were preincubated with FokI at 15°C for 20 min. After 2 h, 2-�l
aliquots were taken from the reaction mixtures, added to 4 �l of
stop solution [9 volumes of Formamide (Merck) and 1 volume
of 10� 89 mM Tris�89 mM boric acid�2 mM EDTA, pH 8.3
(TBE)]. Half of the sample above was assayed by 15% denaturing

Fig. 2. Experimental support to stochastic computation reactions. (A) Computation trees used for the calibration of transition probabilities. (B) The mapping
from the relative concentration of the competing transition molecules to the distribution of the output states for a single stochastic choice. Each curve shows
the result for a different pair of competing transitions. Each pair is represented in the legend by a transition rule transforming to the S1 state. (C) Sensitivity of
the probability distribution to the absolute concentration of the input molecule. Distribution of the output states for a single stochastic choice is shown for
different absolute input concentrations and different ratios of the transition molecules. The computation was performed on the input bbba by using the
transition T3 (S03b S0) for the first three symbols and a mixture of the transitions T1 (S03a S0) and T2 (S03a S1) for the choice step. The deterministic software
molecule T3 was kept at 1.5 �M concentration and the choice molecules T1 and T2 were maintained at a total concentration of 0.5 �M, while their ratio was
systematically varied. Input concentrations were 50, 100, 250, 500, and 1,000 nM. For each input concentration and ratio of the competing transition molecules,
the output ratio was measured. Each curve summarizes the results for one input concentration, indicated in the legend. (D) Sensitivity of the probability
distribution to the absolute concentration of the software molecules. Input concentration was kept constant, whereas the total concentration of the competing
transition molecules was 100, 250, 500, and 1,000 nM. Distribution of the output states for a single stochastic choice is shown for different total concentrations
and different ratios of the software molecules. Each curve summarizes the results for one total concentration of the software molecules, indicated in the legend.
The computation used was the same as for the results shown in C. (E) Experimental data used for measuring the output distribution. The gel shows the results
obtained with programs 3 and 4 (Table 1). (F) The correlation between the predicted and the measured output distribution for all computations by using
measured and calculated calibrations.

9962 � www.pnas.org�cgi�doi�10.1073�pnas.0400731101 Adar et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 



www.manaraa.com

PAGE containing 7 M urea (ultrapure, ICN). The bands were
visualized by the Typhoon 9400 machine. In this assay, formation
of S0 or S1 outputs was represented by 16- or 17-nt-long product
bands with the Cy5 label. Quantitation of the products was done
by the IMAGEQUANT V. 5.2 as described in Calibration Reactions.

Calculation of Transition Probabilities. To calculate the transition
probabilities by using measured output distribution, a computer
implementation of the computation graph was developed in
MATLAB 6.5 (MathWorks, Natick, MA). The simulation gener-
ated an equation set for each given program, with transition
probabilities as the unknown variables. Each equation summed
the probabilities of all possible computation paths carried out on
one input. The result was expected to be similar to the measured
final-state distribution for that computation. A solution to such
an equation set is an optimal set of transition probabilities, which
minimizes the discrepancy between the calculated and the
measured final-state distribution. A least-squares optimization
was used for calculating the optimal solution by iteratively
refining the transition probabilities by using the method of
preconditioned conjugate gradients. However, because of the
nature of the problem, there could be local solutions, which
might not be consistent with other programs. The following
process was used for finding a consistent solution: Programs 1,
2, and 3 were used jointly as training programs according to
which the simulation could learn a consistent set of transition
probabilities. The optimization process was repeated 450 times
for programs 1, 2, and 3. For each set, a single optimization was
performed given the calibration initial values. Additional 449
optimizations were performed for each program with random
initial values. All possible combinations of the calculated optimal
transition sets were compared with each other. The most con-
sistent triplet-of-transition probability set was selected, so that
the transition probabilities calculated for the same concentration
ratios were similar for different programs.

Determining the Deviation of Predicted Results. Determination of
the standard deviation of the predicted output ratio was per-
formed by simulating all possible independent pipetting errors of
5% with the same probabilities when preparing the mixtures of
the transition molecules. We simulated the experimental setup
where each pair of transitions was mixed independently, and then
the program mixture was composed from equal solution volumes
containing each pair. We assumed discrete deviations of �5%,
0%, and 5% from the nominal volume of each software molecule
solution. The deviation in the transition probability for each
volume deviation was calculated from the measured calibration
curve. Each program generated a set of 6,561 (38) different
probability combinations, resulting in 6,561 possible output
ratios, for which a standard deviation was calculated. The
average of the set was very close to the predicted value with no
deviations. The simulation was performed with the MATLAB 6.5
software (MathWorks).

Results
The molecular stochastic automaton described here is based
on the two-state, two-symbol automaton developed in our
laboratory (11). The hardware consists of a class IIS restriction
enzyme FokI, which recognizes the sequence GGATG and
cleaves 9 and 13 nucleotides away from the recognition site on
the sense and antisense strands, respectively. The automaton
has eight possible transition rules (Fig. 1E). As transition
molecules used in a computation are reusable, their concen-
tration remains constant. This ensures that transition proba-
bilities derived from transition molecule concentrations re-
main constant during the computation.

At the molecular level, two transition molecule species com-
pete for any intermediate configuration with probabilities of

success correlated to their relative concentrations (Fig. 1F).
When the computation is performed on a large ensemble of
input molecules, the probability to obtain a particular final state
can be measured directly from the relative concentration of the
output molecule encoding this state among all output molecules.
We control the transition probabilities by varying the relative
concentration of the transition molecules and attempt to predict
the distribution between output molecules for a given input
based on these concentrations. Our key problem in doing so is
to determine the function linking relative concentrations of
competing transition molecules to the probability of a transition
being chosen. Minute variations in the chemical composition of
each transition molecule result in different affinities to the input
molecule and, therefore, this function must be determined
experimentally. Furthermore, we cannot assume that this func-
tion is independent of the absolute molar concentrations of the
input and�or of the software molecules. The bulk of our exper-
imental and computational work was devoted to determining
this function for each pair of competing transition molecules and
to establishing its independence of these other parameters.

To determine the function mapping relative concentrations of
transition molecules to transition probabilities we performed
calibration with the four-symbol inputs aaab and bbba. The
computation proceeds deterministically until the last symbol and
then performs a stochastic choice between two competing
transitions. We used this design to represent adequately multi-
symbol computations and avoid effects unique to initial symbols.
We prepared software mixtures that represent all four possible
intermediate state-symbol combinations (Fig. 2 A). The compu-
tation was carried to completion and the exact duration was
determined in the preliminary experiments with inputs of dif-
ferent lengths. The resulting measured calibration curves for all
four competing pairs of transition molecules are shown in Fig.
2B, demonstrating a different mapping for each pair of transi-
tions. Transitions processing the symbol a provide a linear
mapping, with a probability distribution being close to the
concentration ratio. On the other hand, transitions processing b
reveal a convex mapping, which is apparently caused by the
software molecules that result in state S1 (T4 and T8) having a
higher reaction rate than the competing software molecules that
result in state S0 (T3 and T7). In steep regions of the curve the
precision with which probabilities can be programmed is reduced
because of higher sensitivity to pipetting errors. Error proba-
bilities of the software molecules are reflected in the non-zero
probability to accomplish a transition when its competing tran-
sition is absent (e.g., T3–T4). However, we suspect that the
computation reaction also has byproducts that overlap with
error-representing bands but do not accumulate in the final error
of multistep computations. Studies to distinguish between the
two types of erroneous products are underway. Accumulating
errors in transitions result from the incorrect cleavage by FokI
that also cleaves one nucleotide further than expected both in the
sense and antisense strands of the input molecule. Because of
this imprecision in enzyme action and the relative location of the
S1 and S0 sticky ends, transitions that transform to state S1 may
result in transitions to state S0, whereas transitions intended to
transform to S0 result in dead-end products. This finding ex-
plains the higher apparent error rates observed with the software
molecules that transform to S1.

To verify that the system is insensitive to fluctuations in input
concentration, which naturally occur in the course of a multistep
computation, we measured the distribution of output states of a
computation with one stochastic choice by using the input bbba
and the computation tree used for calibration of the competing
pair of transition pair T1–T2. The summary of the results in Fig.
2C indicates that the computation is insensitive to the different
input concentrations used and the transition probability is
determined solely by the ratio between the transition molecules.

Adar et al. PNAS � July 6, 2004 � vol. 101 � no. 27 � 9963

BI
O

CH
EM

IS
TR

Y
CO

M
PU

TE
R

SC
IE

N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 



www.manaraa.com

Another set of experiments was performed to ensure that the
transition probability as determined by the ratio between tran-
sition molecules is not affected by their absolute concentrations.
We used the same experimental system as above, but in this case
the concentration of the input was kept constant while the total
concentration of the competing transition molecules varied. The
summary of the results is shown on the graph in Fig. 2D. The
results indicate that the transition probability is indeed relatively
insensitive to the absolute software concentrations and is defined
mostly by the relative concentration ratio.

We tested the stochastic finite automaton by running four
programs with the same structure as the one described in Fig. 1C,
but with different transition probabilities (Table 1), on nine
inputs that varied in symbol composition and length (I1–I9,
Table 2, which is published as supporting information on the
PNAS web site). Each program specifies the relative concentra-
tions of all pairs of competing transition, which in turn determine
their expected probabilities as explained below. We carried out
extensive preliminary experiments (not shown) to develop the
reaction protocol. These experiments indicated that at high
concentrations the transition T6 probably digests other transi-
tion molecules with the aid of the enzyme FokI, which is present

in the solution, modifying the software composition during the
computation in an unpredictable way. Hence, we avoided high
concentrations of T6 in our programs. We then performed the
calibration and computation experiments reported here in a
single run under uniform conditions. Fig. 2E shows represen-
tative results of the computations as analyzed by PAGE. Each
lane is an application of programs 3 and 4 to one of the inputs.
We predicted the distribution of the outputs by using the
calibration graphs (Fig. 2B). Good correlation was observed
between predicted and measured results by using measured
transition probabilities, although some systematic errors were
apparent. To account for these discrepancies, we calculated the
expected deviation in output probabilities caused by indepen-
dent pipetting errors of 5% when mixing transition molecules
(Fig. 3). The calculation indicated that a number of measured
results, notably with inputs ending with b, fell outside of the
expected error range and were consistently lower than the
prediction. Therefore, this bias could not be attributed solely to
pipetting errors but rather to some error in the method of direct
probability measurement. To compensate for discrepancies be-
tween transition probabilities obtained in direct measurements
and those manifested in multistep computations, we designed an

Table 1. Programs tested with the stochastic automaton

T

Program 1 Program 2 Program 3 Program 4

[T]rel Pm Pc [T]rel Pm Pc [T]rel Pm Pc [T]rel Pm Pc

T2 50 51 43 20 18 27 20 18 27 50 51 43
T4 10 38 54 10 38 54 50 74 77 10 38 54
T6 50 34 33 20 12 13 20 12 13 20 12 13
T8 10 32 35 10 32 35 50 90 94 50 90 94

All values stated are percentages.

Fig. 3. Bar charts show predicted vs. measured S0 output probability for each experiment. Output probabilities are predicted by using measured calibration
(light blue) and calculated calibration (dark blue) and compared with measured probabilities (gray). Error bars show � 2 SD (95% of expected results) in predicted
outputs caused by independent pipetting errors of 5%.

9964 � www.pnas.org�cgi�doi�10.1073�pnas.0400731101 Adar et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 



www.manaraa.com

in silico method for probability determination based on a
simulation of the reaction network. The simulation utilizes
least-squares optimization to find an optimal set of transition
probabilities for each program. The optimization begins with
measured transition probabilities and iteratively refines them
until a minimum discrepancy between calculated and measured
output probabilities is reached. Programs 1, 2, and 3 were used
jointly as a training set according to which the simulation could
learn a consistent set of optimal transition probabilities. The
transition probabilities calculated for the same concentration
ratios were equal for different programs, as they should be under
our molecular computational model. The computed transition
probabilities were then tested independently on program 4, since
it is composed of pairs of transitions already used in at least one
of the programs 1–3, and it provided a good fit to the measured
final-state probabilities of that program.

Some errors in direct probability measurements become appar-
ent by comparing measured and calculated transition probabilities.
The pair T3–T4, for example, has a measured probability of 38% to
transform to S1 compared with a calculated probability of 54%.
This finding suggests that the method for direct probability mea-
surements should be improved in the future. In addition, a strong
correlation exists between the standard deviation of predicted
output probability and the difference between measured and
predicted output probabilities, which indicates that for some tran-
sition pairs the differences resulting from intrinsic sensitivity to
pipetting errors overlap with a systematic error in probability
measurements.

In Table 1, column [T]rel shows the relative percentage of the
transition molecules that transform to S1 within each competing
pair; column Pm shows the measured transition probability
corresponding to this molecule, and column Pc shows the
calculated transition probability. Fig. 2F shows the correlation
between measured output probabilities and output probabilities
calculated from measured and calculated transition probabili-
ties. The correlation that utilizes the calculated transition prob-
abilities is very good. A detailed summary of the results is given
in Tables 2 and 3, which are published as supporting information
on the PNAS web site.

Discussion
Predictability and error control are prerequisites for any prac-
tical computer architecture. We obtained a good fit between
predicted and measured computation output using calculated
transition probabilities. This result suggests that the transition
probability associated with a given relative concentration of a
software molecule is a dependable programming tool. This
principle was recently used in a construction of a molecular
computer capable of probabilistic logical analysis of the disease-
related molecular indicators in vitro by coregulating the concen-
tration of software molecules with the concentration of these
indicators (13).

We thank A. Regev for critical review of this manuscript. This work was
supported by grants from the Israeli Ministry of Science, the Israeli
Science Foundation, and the Minerva Foundation.

1. Maass, W. & Orponen, P. (1998) Neural Comput. 10, 1071–1095.
2. Segala, R. (1995) Lect. Notes Comput. Sci. 962, 234–248.
3. Delgado, J. & Sole, R. V. (2000) Phys. Lett. A 270, 314–319.
4. Bejerano, G. & Yona, G. (2001) Bioinformatics 17, 23–43.
5. Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G. (1998) Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge Univ.
Press, Cambridge, U.K.).

6. Priami, C. Regev, A., Shapiro, E. & Silverman, W. (2001) Inf. Process. Lett. 80,
25–31.

7. Regev, A. & Shapiro, E. (2002) Nature 419, 343–343.
8. Gentle, J. E. (1998) Random Number Generation and Monte Carlo Methods

(Springer, New York).
9. Cauwenberghs, G. (1999) IEEE Trans. Circuits II 46, 240–250.

10. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z. & Shapiro, E.
(2001) Nature 414, 430–434.

11. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro, E. (2003) Proc.
Natl. Acad. Sci. USA 100, 2191–2196.

12. Benenson, Y. & Shapiro, E. (2004) in Dekker Encyclopedia of Nanoscience and
Nanotechnology, eds. Schwarz, J. A., Contescu, C. I. & Putyera, K. (Dekker,
New York), pp. 2043–2056.

13. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. (2004) Nature 429,
423–429.

14. McAdams, H. H. & Arkin, A. (1997) Proc. Natl. Acad. Sci. USA 94, 814–819.
15. Bennett, C. H. (1979) BioSystems 11, 85–90.
16. Bennett, C. H. (1982) Int. J. Theor. Phys. 21, 905–940.
17. Adelman, L. M. (1994) Science 266, 1021–1024.
18. Lipton, R. J. (1995) Science 268, 542–545.
19. Ouyang, Q., Kaplan, P. D., Liu, S. & Libchaber, A. (1997) Science 278, 446–449.
20. Khodor, J. & Gifford, D. K. (1999) Biosystems 52, 93–97.
21. Ruben, A. J. & Landweber, L. F. (2000) Nat. Rev. Mol. Cell. Biol. 1, 69–72.
22. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.

& Hagiya, M. (2000) Science 288, 1223–1226.
23. Faulhammer, D., Cukras, A. R., Lipton, R. J. & Landweber, L. F. (2000) Proc.

Natl. Acad. Sci. USA 97, 1385–1389.
24. Mao, C., LaBean, T. H., Reif, J. H. & Seeman, N. C. (2000) Nature 407,

493–496.
25. Stojanovic, M. N. & Stefanovic, D. (2003) Nat. Biotech. 21, 1069–1074.
26. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S.,

Sugiyama, H. & Hagiya. M. (1999) Biosystems 52, 81–91.
27. Bar-Ziv, R., Tlusty, T. & Libchaber, A. (2002) Proc. Natl. Acad. Sci. USA 99,

11589–11592.
28. Hopcroft, J. E., Motwani, R. & Ullmann, J. D. (2000) Introduction to Automata

Theory, Languages and Computation (Addison-Wesley, Boston), 2nd Ed.
29. Rabin, M. O. (1963) Inf. Control 6, 230–245.

Adar et al. PNAS � July 6, 2004 � vol. 101 � no. 27 � 9965

BI
O

CH
EM

IS
TR

Y
CO

M
PU

TE
R

SC
IE

N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
19

, 2
02

1 


